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Regulation of cellular growth implies spatiotemporally coordi-
nated programmes of gene transcription. A central question,
therefore, is how global transcription is coordinated in the
genome. The growth of the unicellular organism Escherichia coli
is associated with changes in both the global superhelicity
modulated by cellular topoisomerase activity and the relative
proportions of the abundant DNA-architectural chromatin
proteins. Using a DNA-microarray-based approach that combines
mutations in the genes of two important chromatin proteins with
induced changes of DNA superhelicity, we demonstrate that
genomic transcription is tightly associated with the spatial
distribution of supercoiling sensitivity, which in turn depends
on chromatin proteins. We further demonstrate that essential
metabolic pathways involved in the maintenance of growth
respond distinctly to changes of superhelicity. We infer that
a homeostatic mechanism organizing the supercoiling sensiti-
vity is coordinating the growth-phase-dependent transcription
of the genome.
Keywords: FIS; H-NS; supercoiling; transcription regulation;
metabolism
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INTRODUCTION
Understanding the mechanisms of concerted rearrangements of
gene activities during growth and development is a fundamental
problem. How is genomic expression organized in a cell and is
there a common coordinating mechanism? Almost five decades
ago, John von Neumann proposed that the flow of genetic
information is coordinated by a specific relationship between the
‘digital’ (discontinuous) properties of unique genes and ‘analog’
(continuous) properties of the gene products (von Neumann,
1958). Such a relationship evidently develops during pattern
formation in Drosophila embryogenesis, in which the essentially
‘analog’ information provided by concentration gradients of

transcription factors is converted into ‘digital’ patterns of
transcripts by means of differential protein interactions occurring
on spatially separated transcriptional enhancers (Sauer et al,
1996). Most clearly, this fundamental principle can be demon-
strated in Escherichia coli, a classical model organism that shows
strict correlations between the global gene expression patterns and
different growth states (Tao et al, 1999; Wei et al, 2001; Weber
et al, 2005) and also enables the modulation of genomic
transcription by alterations of global DNA superhelicity (Jeong
et al, 2004; Peter et al, 2004; Willenbrock & Ussery, 2004; Travers
& Muskhelishvili, 2005a). Such alterations are associated with
both growth transitions and stress responses to environmental
challenge, supporting the idea that DNA supercoiling itself might
act as a principal coordinator of global gene expression (Balke
& Gralla, 1987; Dorman, 1996; Tse-Dinh et al, 1997; Cheung et al,
2003; Travers & Muskhelishvili, 2005b). Nevertheless, as less than
8% of specific genes are found to respond to supercoiling in E. coli
(Peter et al, 2004), the role of superhelicity in organizing the global
growth-phase-dependent transcription remains obscure.

Previous studies proposed that binding of abundant chromatin
proteins could selectively direct the supercoiling energy to gene
promoters (Travers & Muskhelishvili, 1998; Hatfield & Benham,
2002; Muskhelishvili & Travers, 2003). In this study, we
investigated the transcriptional effects of two such proteins, factor
for inversion stimulation (FIS) and histone-like nucleoid structur-
ing protein (H-NS), which act as global pleiotropic regulators
in E. coli. H-NS can activate transcription but is predominantly
a universal repressor for the bacterial genome, whereas FIS
modulates the transcription of many genes implicated in regula-
tion of metabolism and growth (Gonzalez-Gil et al, 1996;
Dorman, 2004; Kelly et al, 2004; Rimsky, 2004). Previously, it
was shown that the loss of H-NS and FIS affects the superhelical
density of plasmid DNA (Owen-Hughes et al, 1992; Schneider
et al, 1997). By combining the effects of mutations in the fis and
hns genes with experimentally induced changes of global super-
helicity, we demonstrate here that the organization of global
transcription is tightly coupled to distribution of supercoiling
sensitivity in the genome.

RESULTS AND DISCUSSION
FIS and H-NS are present in several tens of thousands of copies per
cell and can both activate and repress many genes by direct
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binding (Dorman & Deighan, 2003). However, FIS forms a
concentration gradient decreasing by two orders of magnitude
on transition to the stationary phase, whereas the concentration
of H-NS remains relatively constant (Ball et al, 1992; Azam &
Ishihama, 1999). As both these regulators modulate supercoiling,
we expected to observe both direct and indirect effects on global
transcription during growth. We used a novel DNA microarray-
based strategy to link the growth-phase-dependent transcription of
genes with supercoiling sensitivity. In one set of experiments, we
compared the growth-phase-dependent transcript profiles of the
wild type with both the fis and hns mutants to distinguish between
the genes expressed in the presence or absence of each regulator
(Fig 1A, data set A). In the second set of experiments (data set B),
we used genetically engineered E. coli LZ41 and LZ54 strains
containing drug-resistant topoisomerase gene alleles to inhibit
DNA gyrase or topoisomerase IV activity selectively and thereby
induce relaxation or high negative supercoiling, respectively
(Zechiedrich et al, 1997). On introduction of the fis and hns

mutations in the LZ41 and LZ54 strains, the global supercoiling
response to drug addition was not substantially altered
(s¼�0.082 for LZ54 wild type and �0.086 for both LZ54fis
and LZ54hns mutants; s¼o�0.031 for both LZ41 wild type and
mutants; supplementary Fig 2 online). Thus, using distinct
combinations of the LZ41 and LZ54 strains and their mutant
derivatives, we could vary superhelical density to distinguish gene
transcripts associated with either relaxation (Rel ) or high negative
supercoiling (Hyp) in each genetic background (Fig 1A, Exp.1; the
term ‘associated’ emphasizes the difficulty of identifying whether
these transcripts are activated by a given supercoiling regime or
inactivated by the opposite one) and also those either activated
(Act) or repressed (Rep) by each regulator at various superhelicities
(Exp.2; we note that the regulator effects can be either direct
or indirect). These ‘supercoiling-associated’ transcripts were then
mapped on the growth-phase-dependent transcript profiles of data
set A to evaluate the input of supercoiling sensitivity in the
organization of global transcription.
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Fig 1 | Strategy of mapping supercoiling-associated genes. (A) Set A compares the transcript profiles of the CSH50 wild-type and mutant cells during

growth. Set B compares the transcript profiles of LZ41 and LZ54 strains and their derivatives after norfloxacin treatment. (B) Genomic wheels showing

spatiotemporal distributions of Rel (red), Hyp (blue), Act (green) and Rep (yellow) transcripts among the growth-phase-dependent genes (grey) in

CSH50 wild type (outer wheels) and fis (inner wheels). (C) Transcript distributions in CSH50 wild type and hns mutant. (D) Changes of supercoiling-

associated genes during growth. Distributions of Hyp (blue), Rel (red), Act (green) and Rep (yellow) gene transcripts are shown. The sums of total

mapped HypþRel or ActþRep transcripts were set at 100% for each growth phase. The distinct ‘double-coded’ transcripts—Hyp/Act, Hyp/Rep,

Rel/Act and Rel/Rep—are ordered from left to right for each bar. The sum of total mapped double-coded transcripts for the entire growth cycle was

set at 100%. The number of genes is indicated within the bars. fis, CSH50 fis; hns, CSH50 hns; LS, late stationary phase; ME, mid-exponential phase;

Ori, origin; Ter, terminus of replication; TS, transition state; wt, CSH50 wild type.
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Supercoiling sensitivity of global transcription
The results of mapping are presented on genomic wheels in
Fig 1B,C. About 50% of all transcripts could be mapped
(supplementary Table III online), indicating that these variable
patterns are largely organized by supercoiling-associated
genes. Notably, out of a total of 1,596 Hyp and Rel transcripts
identified, only 145 were common to the wild-type, fis and hns
backgrounds, indicating that these supercoiling response depends
on the genetic context. By using fis and hns mutants, we thus
greatly expanded the repertoire of supercoiling-associated
transcripts identified. The observed interspersed pattern
of the domains of relaxation and high negative superhelicity
agrees with both the formation of fluid short-range domains
of distinct topologies in the E. coli chromosome (Postow et al,
2004; Stein et al, 2005) and the complex dependence of
long-range transcriptional patterns on supercoiling (Jeong et al,
2004). This supports the idea that transcription is governed by
‘effective’ superhelicity—a parameter reflecting the dynamic
nature of competition between topoisomerases, transcription
machinery and chromatin proteins for available supercoils
(Travers & Muskhelishvili, 2005b). Variable distributions of
supercoiling sensitivity reflect a compound effect of several
cooperating factors in addition to FIS and H-NS, including
all chromatin architectural proteins, more dedicated transcrip-
tional regulators and perhaps the chromosome partitioning
proteins (Malik et al, 1996; Sawitzke & Austin, 2000; Beloin
et al, 2003; Frenkiel-Krispin et al, 2004). However, our data show
that the lack of a single key component of bacterial chromatin—
either FIS or H-NS—can reorganize the supercoiling sensitivity of
genomic transcription, consistent with the previously proposed
global homeostatic feedback (Schneider et al, 2000). As expected
from such a mechanism, all strains grew with comparable
rates, despite remarkable variations of transcript patterns (supple-
mentary Fig 1 online). Nevertheless, during prolonged growth,
mutations in fis can confer a competitive advantage or disadvan-
tage depending on the precise environment (Schneider et al, 1997;
Crozat et al, 2005).

Variations of supercoiling-associated transcripts
Distributions of supercoiling-associated transcripts in the wild-
type, fis and hns cells varied with growth. The exponentially
growing fis mutant showed an increase of both the Hyp and Rel
transcripts compared with those in wild type, whereas in the hns
mutant the relative proportion of Hyp transcripts increased, in
keeping with in the observed increase of global negative super-
helicity (Fig 1D; supplementary Fig 2B,C online). Furthermore, on
transition to the stationary phase, a lower proportion of Rel genes
were observed in the fis mutant than in the wild type, but not in
the stationary phase itself. As expected, the effect of hns mutation
was most pronounced for the Rep genes. In the fis mutant, the Rep
genes increased only during the exponential phase, whereas in the
hns mutant, the Rep genes predominated during the entire growth
cycle. Also the ‘double-coded’ transcripts responding to specific
combinations of supercoiling and genetic background were
enriched for Rep/Hyp and Rep/Rel genes, especially in hns cells.
Taken together, these observations are in excellent agreement
with differential abundance of FIS and H-NS during the growth
cycle and the general repressor role of H-NS (Ball et al, 1992;
Dorman, 2004).

Supercoiling sensitivity is coupled to metabolic function
Interestingly, the analysis of distribution of Hyp and Rel genes
among the functional groups involved in essential cellular
metabolism demonstrated a higher proportion of Hyp genes in
the anabolic than in the catabolic pathways, which was especially
remarkable in the wild-type cells (Table 1). Analysis of a pathway
of exceptional importance for vitality—the citric acid cycle—
demonstrated that the crucial steps producing combustible fuel
in the form of reducing equivalents NADH and FADH2, which are
required for generation of ATP by oxidative phosphorylation, are
associated with DNA relaxation. In contrast, when we examined
the glyoxalate bypass, topping up the cycle and increasing the net
synthesis of carbohydrate, we found this pathway to be associated
with high negative superhelicity (Fig 2A; supplementary Table II
online). This suggests that high ATP/ADP ratios favouring super-
coiling of DNA by gyrase would facilitate glyoxalate bypass and
plastic substrate synthesis, whereas DNA relaxation would favour
the production of ATP required to maintain gyrase activity.
Furthermore, we found that the de novo pathway of nucleotide
biosynthesis explicitly involves the Hyp genes (Fig 2B). Most of
these genes have promoters with a GC-rich ‘discriminator’
sequence, which confers sensitivity to both high negative super-
coiling and the regulatory nucleotide ppGpp (Cashel, 1970;
Zalkin & Nygaard, 1996; Figueroa-Bossi et al, 1998). Notably,
both the superhelicity and ppGpp concentration are elevated in fis
cells (Travers & Muskhelishvili, 2005b), indicating a homeostatic
regulation mechanism. The observed coupling of distinct super-
coiling sensitivities to essential metabolic pathways provides new
insights into the mechanisms that coordinate central metabolism,
and also sheds light on the puzzling observation that mutations in
metabolic genes can affect DNA topology (Hardy & Cozzarelli,
2005). An important future task is the clarification of mechanistic
effects of changes in superhelicity on transcription, which could
modulate not only transcription initiation but also elongation
and termination.

Our mapped transcript profiles describe the distributions
of supercoiling sensitivity during growth, rather than the strength
of transcriptional response to superhelicity and are consistent
with the proposed role of FIS and H-NS in forming topological
barriers on the chromosome (Hardy & Cozzarelli, 2005;
Dame, 2005). However, Hardy & Cozzarelli failed to detect any
alterations of plasmid supercoiling in fis and hns mutants,
most probably because they did not analyse the entire growth
cycle, which is necessary to show the dynamic changes of
superhelicity (supplementary Fig 2B,C online; Schneider et al,

Table 1 | Supercoiling sensitivity of genes of biosynthesis and
degradation pathways* expressed in the wild-type and mutant
strains

Biosynthesis (Hyp/Rel) Degradation (Hyp/Rel)

Wild type 4.29 0.54
fis 2.07 0.87
hns 1.91 1.0

*The metabolic pathways comprising 421 genes for biosynthesis and 223 genes for
degradation were derived from http://EcoCyc.org. The Hyp to Rel transcript ratios are
derived from the data set B for 148, 111 and 134 metabolic genes expressed in the wild
type, fis mutant and hns mutant, respectively.
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1997). Despite substantial differences in the experimental
design and assay conditions, we identified the supercoiling
sensitivity of previously described genes (Peter et al, 2004).
Also, the functional gene groups discovered in this study are
consistent with those reported for a fis mutant of Salmonella
typhimurium and hns mutant of E. coli (Hommais et al, 2001;
Kelly et al, 2004).

We thus infer that the coordination of growth-phase-dependent
transcription involves a homeostatic mechanism that organizes
the supercoiling sensitivity in the genome. As proposed in our
previous work (Schneider et al, 1999, 2000), this feedback
implicates chromatin proteins that constrain DNA supercoils and
act as ‘optimizers’ of cellular metabolism. Whereas the metabolic
status determines the overall supercoiling level (van Workum et al,

1996), we show here that the genomic distributions of super-
helicity can specify the patterns of transcripts during growth.
Global regulation thus seems to be a genuine device converting
the ‘analog’ information of torsional energy distributions into
‘digital’ patterns of responding genes. Our observations provide a
holistic conceptual framework for analysis of global transcription
and reinforce the notion of John von Neumann of coordination
of information flow in the genetic system. We note that DNA
supercoiling is implicated in the regulation of eukaryotic
transcription (Mizutani et al, 1991; Dunaway & Ostrander,
1993; Caserta & Di Mauro, 1996; Kouzine et al, 2004). Thus,
studies of regulated alterations of DNA superhelicity might be
essential for understanding the coordinated gene functions in
eukaryotes as well.
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METHODS
DNA microarray analysis. The E. coli K12 strains used in this
study for RNA isolation are described elsewhere (Zechiedrich
et al, 1997). The fis and hns mutants of LZ54 and LZ41 strains
were obtained by P1 phage transduction. The transcript profiling
for the LZ strains was carried out after brief (5 min) treatment
of cells growing exponentially in 2�YT medium at 30 1C with
moderate concentrations of norfloxacin (20 mg/ml). All other
strains were grown in 2�YT medium at 37 1C. DNA microarray
experiments were performed according to OciChipTM-Application
Guide (http://www.ocimumbio.com) as two biological replicates
with two technical replicates each (except for the transition state
of CSH50fis and the stationary phase of CSH50hns strains;
supplementary information online). Scanned array images were
quantified and normalized using the TM4 software package. A
one-class t-test was applied to replicated experiments to obtain
genes with significant P-values (Po0.05). Further details are
provided in the supplementary information online.
Real-time PCR. QuantiTects SYBRs Green one-step Real-Time
PCR reactions (Qiagen GmbH, Hilden, Germany) were performed
in triplicate, following the manual of the manufacturer and using
an Mx3000PTM Real-Time cycler (Stratagenes, La Jolla, CA, USA).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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